使用TensorFlow從頭開始實現(xiàn)這個架構(gòu)
# 繪制模型
tf.keras.utils.plot_model(model, to_file='model.png', show_shapes=True, show_dtype=False,show_layer_names=True, rankdir='TB', expand_nested=False, dpi=96)
模型圖的一個片段:
使用TensorFlow的MobileNet模型實現(xiàn):
import tensorflow as tf
# 導(dǎo)入所有必要的層
from tensorflow.keras.layers import Input, DepthwiseConv2D
from tensorflow.keras.layers import Conv2D, BatchNormalization
from tensorflow.keras.layers import ReLU, AvgPool2D, Flatten, Dense
from tensorflow.keras import Model
# MobileNet block
def mobilnet_block (x, filters, strides):
x = DepthwiseConv2D(kernel_size = 3, strides = strides, padding = 'same')(x)
x = BatchNormalization()(x)
x = ReLU()(x)
x = Conv2D(filters = filters, kernel_size = 1, strides = 1)(x)
x = BatchNormalization()(x)
x = ReLU()(x)
return x
# 模型主干
input = Input(shape = (224,224,3))
x = Conv2D(filters = 32, kernel_size = 3, strides = 2, padding = 'same')(input)
x = BatchNormalization()(x)
x = ReLU()(x)
# 模型的主要部分
x = mobilnet_block(x, filters = 64, strides = 1)
x = mobilnet_block(x, filters = 128, strides = 2)
x = mobilnet_block(x, filters = 128, strides = 1)
x = mobilnet_block(x, filters = 256, strides = 2)
x = mobilnet_block(x, filters = 256, strides = 1)
x = mobilnet_block(x, filters = 512, strides = 2)
for _ in range (5):
x = mobilnet_block(x, filters = 512, strides = 1)
x = mobilnet_block(x, filters = 1024, strides = 2)
x = mobilnet_block(x, filters = 1024, strides = 1)
x = AvgPool2D (pool_size = 7, strides = 1, data_format='channels_first')(x)
output = Dense (units = 1000, activation = 'softmax')(x)
model = Model(inputs=input, outputs=output)
model.summary()
# 繪制模型
tf.keras.utils.plot_model(model, to_file='model.png', show_shapes=True, show_dtype=False,show_layer_names=True, rankdir='TB', expand_nested=False, dpi=96)
結(jié)論
MobileNet是最小的深度神經(jīng)網(wǎng)絡(luò)之一,它速度快、效率高,可以在沒有高端GPU的設(shè)備上運行。
當使用Keras(在TensorFlow上)這樣的框架時,這些網(wǎng)絡(luò)的實現(xiàn)非常簡單。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 “AI寒武紀”爆發(fā)至今,五類新物種登上歷史舞臺
- 4 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計算迎來商業(yè)化突破,但落地仍需時間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 封殺AI“照騙”,“淘寶們”終于不忍了?
- 9 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機器人東風(fēng)翻身?
- 10 地平線自動駕駛方案解讀