清華團(tuán)隊(duì)推出基于圖的深度學(xué)習(xí)工具包CogDL v0.1
一行代碼命令可以做什么?
“一行命令可以實(shí)現(xiàn)‘一條龍’運(yùn)行實(shí)驗(yàn)!
近年來(lái),結(jié)構(gòu)化數(shù)據(jù)的表示學(xué)習(xí)備受業(yè)界關(guān)注與熱捧,圖神經(jīng)網(wǎng)絡(luò)成為處理相關(guān)工作的有力工具,基于隨機(jī)游走、矩陣分解的方法在搜索推薦、分子和藥物生成等領(lǐng)域有著十分重要的應(yīng)用。
但是,由于許多項(xiàng)目的代碼并未開源或者開源代碼的風(fēng)格多種多樣,研究者和使用者在使用這些方法的過(guò)程中會(huì)遇到各種各樣的問(wèn)題,比如實(shí)驗(yàn)復(fù)現(xiàn)以及如何在自己的數(shù)據(jù)集上運(yùn)行模型等。
具體而言(以學(xué)術(shù)研究為例),研究者和使用者在從事研究過(guò)程中需要將自己提出的模型與其他模型進(jìn)行對(duì)比,來(lái)驗(yàn)證所提出模型的有效性。但在對(duì)比過(guò)程中,他們需要選定若干個(gè)下游任務(wù),在每個(gè)任務(wù)下,通過(guò)公平的評(píng)估方式來(lái)對(duì)比不同模型的性能,由于不同模型在提出時(shí)可能會(huì)使用不完全一致的下游任務(wù)或者評(píng)估方式,他們需要花費(fèi)大量精力修改基線模型來(lái)進(jìn)行適配。
那么,如何快速、便捷地使用已有的圖表示學(xué)習(xí)等模型來(lái)復(fù)現(xiàn)基線模型(baseline),并將這些模型應(yīng)用到自定義的數(shù)據(jù)集或模型上?
為此,清華大學(xué)知識(shí)工程實(shí)驗(yàn)室(KEG)聯(lián)合北京智源人工智能研究院(BAAI)開發(fā)了一種基于圖深度學(xué)習(xí)的開源工具包——CogDL(底層架構(gòu)為 PyTorch,編程語(yǔ)言為 Python)。
據(jù) CogDL 開發(fā)者介紹,該工具包通過(guò)整合多種不同的下游任務(wù),同時(shí)搭配合適的評(píng)估方式,使得研究者和使用者可以方便、快速地運(yùn)行出各種基線模型的結(jié)果,進(jìn)而將更多精力投入研發(fā)新模型的工作之中。
“對(duì)圖領(lǐng)域中每種任務(wù),我們提供了一套完整的“數(shù)據(jù)處理-模型搭建-模型訓(xùn)練-模型評(píng)估”的方案,易于研發(fā)人員做相關(guān)的實(shí)驗(yàn)。比如對(duì)于圖上半監(jiān)督節(jié)點(diǎn)分類任務(wù),我們整合了常用的數(shù)據(jù)集 Cora、Citeseer、Pubmed,提供了經(jīng)典的/前沿的各種模型(包括GCN、GAT、GCNII 等),提供了相應(yīng)的訓(xùn)練腳本,并且整理出了一個(gè)相應(yīng)的排行榜作為參考! CogDL 開發(fā)者說(shuō)。
CogDL 最特別的一點(diǎn)在于它以任務(wù)(task)為導(dǎo)向來(lái)集成所有算法,將每一個(gè)算法分配在一個(gè)或多個(gè)任務(wù)下,從而構(gòu)建了 “數(shù)據(jù)處理-模型搭建-模型訓(xùn)練和驗(yàn)證” 一條龍的實(shí)現(xiàn)。
# GCN 和 GAT 在 Cora 和 Citeseer 上的實(shí)驗(yàn)python scripts/train.py --task node_classification --dataset cora citeseer --model gcn gat
此外,CogDL 也支持研究者和使用者自定義模型和數(shù)據(jù)集,并嵌入在 CogDL 的整體框架下,從而幫助他們提高開發(fā)效率,同時(shí)也包含了當(dāng)前許多數(shù)據(jù)集上 SOTA 算法的實(shí)現(xiàn),并且仍然在不斷更新。
CogDL:面向任務(wù),擴(kuò)展算法
圖表示學(xué)習(xí)算法可以分為兩類:一類是基于圖神經(jīng)網(wǎng)絡(luò)的算法,另一類是基于 Skip-gram 或矩陣分解的算法。前者包括 GCN、GAT、GraphSAGE 和 DiffPool 等,以及適用于異構(gòu)圖的 RGCN、GATNE 等;后者則包括 Deepwalk、Node2Vec、HOPE 和 NetMF 等,以及用于圖分類的 DGK、graph2vec 等算法。
大體上,CogDL 將已有圖表示學(xué)習(xí)算法劃分為以下 6 項(xiàng)任務(wù):
有監(jiān)督節(jié)點(diǎn)分類任務(wù)(node classification):包括 GCN、GAT、GraphSAGE、MixHop 和 GRAND 等;無(wú)監(jiān)督節(jié)點(diǎn)分類任務(wù)(unsupervised node classification):包括 DGI、GraphSAGE(無(wú)監(jiān)督實(shí)現(xiàn)),以及 Deepwalk、Node2vec、ProNE 等;有監(jiān)督圖分類任務(wù)(graph classification):包括 GIN、DiffPool、SortPool 等;無(wú)監(jiān)督圖分類任務(wù)(unsupervised graph classification):包括 InfoGraph、DGK、Graph2Vec 等;鏈接預(yù)測(cè)任務(wù)(link prediction):包括 RGCN、CompGCN、GATNE 等;異構(gòu)節(jié)點(diǎn)分類(multiplex node classification):包括 GTN、HAN、Metapath2vec 等。
CogDL 還包括圖上的預(yù)訓(xùn)練模型 GCC,GCC 主要利用圖的結(jié)構(gòu)信息來(lái)預(yù)訓(xùn)練圖神經(jīng)網(wǎng)絡(luò),從而使得該網(wǎng)絡(luò)可以遷移到其他數(shù)據(jù)集上,來(lái)取得較好的節(jié)點(diǎn)分類和圖分類的效果。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?