訂閱
糾錯(cuò)
加入自媒體

我們真的永遠(yuǎn)也理解不了人工智能嗎?

美國科學(xué)雜志nautil.us《鸚鵡螺》作家Aaron M. Bornstein發(fā)表了針對人工智能時(shí)代下神經(jīng)網(wǎng)絡(luò)模型的深度報(bào)道。從語音識別到語言翻譯,從下圍棋的機(jī)器人到自動駕駛汽車,各行各業(yè)都在該人工智能的驅(qū)動下出現(xiàn)了新的突破。雖然現(xiàn)代神經(jīng)網(wǎng)絡(luò)的表現(xiàn)令人激動,但也面臨一個(gè)棘手的問題:沒人理解它們的運(yùn)行機(jī)制,這也就意味著,沒人能預(yù)測它們何時(shí)可能失靈。正因?yàn)槿绱,許多人遲疑不前、不敢對神秘莫測的神經(jīng)網(wǎng)絡(luò)下注。

我們真的永遠(yuǎn)也理解不了人工智能嗎?

在神經(jīng)網(wǎng)絡(luò)中,數(shù)據(jù)從一層傳遞到另一層,每一步都經(jīng)歷一些簡單的轉(zhuǎn)變。在輸入層和輸出層之間還隱藏著若干層,以及眾多節(jié)點(diǎn)組和連接。其中往往找不出可被人類解讀的規(guī)律,與輸入或輸出也沒有明顯的聯(lián)系!吧疃取本W(wǎng)絡(luò)便是隱藏層數(shù)量較多的神經(jīng)網(wǎng)絡(luò)

以下為文章全文:

作為IBM的一名研究科學(xué)家,迪米特里·馬里奧托夫其實(shí)不太說得上來自己究竟打造了什么。他的部分工作內(nèi)容是打造機(jī)器學(xué)習(xí)系統(tǒng)、解決IBM公司客戶面臨的棘手問題。例如,他曾為一家大型保險(xiǎn)公司編寫了一套程序。這項(xiàng)任務(wù)極具挑戰(zhàn)性,要用到一套十分復(fù)雜的算法。在向客戶解釋項(xiàng)目結(jié)果時(shí),馬里奧托夫更是大傷腦筋!拔覀儧]辦法向他們解釋這套模型,因?yàn)樗麄儧]受過機(jī)器學(xué)習(xí)方面的培訓(xùn)。”

其實(shí),就算這些客戶都是機(jī)器學(xué)習(xí)專家,可能也于事無補(bǔ)。因?yàn)轳R里奧托夫打造的模型為人工神經(jīng)網(wǎng)絡(luò),要從特定類型的數(shù)據(jù)中尋找規(guī)律。在上文提到的例子中,這些數(shù)據(jù)就是保險(xiǎn)公司的客戶記錄。此類網(wǎng)絡(luò)投入實(shí)際應(yīng)用已有半個(gè)世紀(jì)之久,但近年來又有愈演愈烈之勢。從語音識別到語言翻譯,從下圍棋的機(jī)器人到自動駕駛汽車,各行各業(yè)都在該技術(shù)的驅(qū)動下出現(xiàn)了新的突破。

雖然現(xiàn)代神經(jīng)網(wǎng)絡(luò)的表現(xiàn)令人激動,但也面臨一個(gè)棘手的問題:沒人理解它們的運(yùn)行機(jī)制,這也就意味著,沒人能預(yù)測它們何時(shí)可能失靈。

以機(jī)器學(xué)習(xí)專家里奇·卡魯阿納和同事們前幾年報(bào)告的一起事件為例:匹茲堡大學(xué)醫(yī)學(xué)中心的一支研究團(tuán)隊(duì)曾利用機(jī)器學(xué)習(xí)技術(shù)預(yù)測肺炎患者是否會出現(xiàn)嚴(yán)重并發(fā)癥。他們希望將并發(fā)癥風(fēng)險(xiǎn)較低的患者轉(zhuǎn)移到門診進(jìn)行治療,好騰出更多床位和人手。該團(tuán)隊(duì)試了幾種不同的方法,包括各種各樣的神經(jīng)網(wǎng)絡(luò),以及由軟件生成的決策樹,后者可總結(jié)出清晰易懂、能被人類理解的規(guī)則。

我們真的永遠(yuǎn)也理解不了人工智能嗎?

在現(xiàn)代機(jī)器學(xué)習(xí)算法中,可解釋性與精確度難以兩全其美。深度學(xué)習(xí)精確度最高,同時(shí)可解釋性最低

神經(jīng)網(wǎng)絡(luò)的正確率比其它方法都要高。但當(dāng)研究人員和醫(yī)生們分析決策樹提出的規(guī)則時(shí),卻發(fā)現(xiàn)了一些令人不安的結(jié)果:按照其中一條規(guī)則,醫(yī)生應(yīng)當(dāng)讓已患有哮喘的肺炎病人出院,而醫(yī)生們都知道,哮喘患者極易出現(xiàn)并發(fā)癥。

這套模型完全遵從了指令

從數(shù)據(jù)中找出規(guī)律。它之所以給出了如此差勁的建議,其實(shí)是由數(shù)據(jù)中的一個(gè)巧合導(dǎo)致的。按照醫(yī)院政策,身患哮喘的肺炎患者需接受強(qiáng)化護(hù)理。而這項(xiàng)政策效果極佳,哮喘患者幾乎從不會產(chǎn)生嚴(yán)重并發(fā)癥。由于這些額外護(hù)理改變了該醫(yī)院的患者記錄,算法預(yù)測的結(jié)果也就截然不同了。

這項(xiàng)研究充分體現(xiàn)了算法“可解釋性”的價(jià)值所在?敯⒓{解釋道:“如果這套以規(guī)則為基礎(chǔ)的系統(tǒng)學(xué)到了‘哮喘會降低并發(fā)癥風(fēng)險(xiǎn)’這一規(guī)則,神經(jīng)網(wǎng)絡(luò)自然也會學(xué)到這一點(diǎn)!钡祟愖x不懂神經(jīng)網(wǎng)絡(luò),因此很難預(yù)知其結(jié)果。馬里奧托夫指出,若不是有一套可解釋的模型,“這套系統(tǒng)可能真的會害死人!

正因?yàn)槿绱,許多人遲疑不前、不敢對神秘莫測的神經(jīng)網(wǎng)絡(luò)下注。馬里奧托夫?yàn)榭蛻籼峁┝藘商啄P停阂惶资巧窠?jīng)網(wǎng)絡(luò)模型,雖然精確,但難以理解;另一套則是以規(guī)則為基礎(chǔ)的模型,能夠用大白話向客戶解釋運(yùn)作原理。盡管保險(xiǎn)公司對精確度要求極高,每個(gè)百分點(diǎn)都十分重要,但客戶仍選擇了精確度稍遜的第二套模型!八麄冇X得第二套模型更容易理解,”馬里奧托夫表示,“他們非?粗刂庇^性。”

隨著神秘難解的神經(jīng)網(wǎng)絡(luò)影響力與日俱增,就連政府都開始對其表示關(guān)注。歐盟兩年前提出,應(yīng)給予公民“要求解釋”的權(quán)利,算法決策需公開透明。但這項(xiàng)立法或許難以實(shí)施,因?yàn)榱⒎ㄕ卟⑽搓U明“透明”的含義。也不清楚這一省略是由于立法者忽略了這一問題、還是覺得其太過復(fù)雜導(dǎo)致。

事實(shí)上,有些人認(rèn)為這個(gè)詞根本無法定義。目前我們雖然知道神經(jīng)網(wǎng)絡(luò)在做什么(畢竟它們歸根到底只是電腦程序),但我們對“怎么做、為何做”幾乎一無所知。神經(jīng)網(wǎng)絡(luò)由成百上千萬的獨(dú)立單位、即神經(jīng)元構(gòu)成。每個(gè)神經(jīng)元都可將大量數(shù)字輸入轉(zhuǎn)化為單個(gè)數(shù)字輸出,再傳遞給另一個(gè)、或多個(gè)神經(jīng)元。就像在人腦中一樣,這些神經(jīng)元也分成若干“層”。一組細(xì)胞接收下一層細(xì)胞的輸入,再將輸出結(jié)果傳遞給上一層。

我們真的永遠(yuǎn)也理解不了人工智能嗎?

神經(jīng)網(wǎng)絡(luò)可通過輸入大量數(shù)據(jù)進(jìn)行訓(xùn)練,同時(shí)不斷調(diào)整各層之間的聯(lián)系,直到該網(wǎng)絡(luò)計(jì)算后輸出的結(jié)果盡可能接近已知結(jié)果(通常分為若干類別)。近年來該領(lǐng)域之所以發(fā)展迅猛,還要?dú)w功于幾項(xiàng)可快速訓(xùn)練深度網(wǎng)絡(luò)的新技術(shù)。在深度網(wǎng)絡(luò)中,初始輸入和最終輸出之間相隔多層。有一套叫AlexNet的著名深度網(wǎng)絡(luò),可對照片進(jìn)行歸類,根據(jù)照片的細(xì)微差別將其劃入不同類別。該網(wǎng)絡(luò)含有超過6000萬個(gè)“權(quán)重”,根據(jù)不同權(quán)重,神經(jīng)元會對每項(xiàng)輸入給予不同程度的關(guān)注。隸屬于康奈爾大學(xué)和AI初創(chuàng)公司Geometric Intelligence的計(jì)算機(jī)科學(xué)家杰森·尤辛斯基指出:“要想理解這個(gè)神經(jīng)網(wǎng)絡(luò),你就要對這6000萬個(gè)權(quán)重都有一定的了解!

而就算能夠?qū)崿F(xiàn)這種可解讀性,也未必是件好事。對可解讀性的要求相當(dāng)于制約了系統(tǒng)的能力,使模型無法僅關(guān)注輸入輸出數(shù)據(jù)、提供“純粹”的解決方案,從而有降低精確度之嫌。美國國防部高級研究計(jì)劃局項(xiàng)目主管戴維·甘寧曾在一次會議上對此進(jìn)行了總結(jié)。在他展示的圖表中,深度神經(jīng)網(wǎng)絡(luò)是現(xiàn)代機(jī)器學(xué)習(xí)方法中最難以理解的一種,而以規(guī)則為基礎(chǔ)、重視可解釋性勝過效率的決策樹則是最容易理解的一種。

1  2  3  下一頁>  
聲明: 本文由入駐維科號的作者撰寫,觀點(diǎn)僅代表作者本人,不代表OFweek立場。如有侵權(quán)或其他問題,請聯(lián)系舉報(bào)。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個(gè)字

您提交的評論過于頻繁,請輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無評論

暫無評論

    掃碼關(guān)注公眾號
    OFweek人工智能網(wǎng)
    獲取更多精彩內(nèi)容
    文章糾錯(cuò)
    x
    *文字標(biāo)題:
    *糾錯(cuò)內(nèi)容:
    聯(lián)系郵箱:
    *驗(yàn) 證 碼:

    粵公網(wǎng)安備 44030502002758號