2020 年 10 篇必讀的 NLP 突破論文 LIST
7、全新的 NLP 模型測試方法 “CheckList”
開發(fā)諸如 GLUE(General Language Understanding Evaluation)和 SuperGLUE 之類的基準,可以用來評估經(jīng)過微調(diào)的 NLP 模型執(zhí)行自然語言理解任務(wù)的能力。通常,將 NLP 模型的性能與驗證準確性的結(jié)果進行比較。需要注意,使用驗證準確性存在固有的局限性,例如過擬合,驗證集的數(shù)據(jù)分布不同等均可能干擾正確的判斷。
而在 ACL 2020 年的 Best Paper 論文 “Beyond Accuracy: Behavioral Testing of NLP Models with CheckList” 中,作者提出了一個框架,一種新的 NLP 模型評測方法:CHECKLIST。CHECKLIST 借鑒了傳統(tǒng)軟件工程的測試準則,通過模板快速生成大量樣例,全面測試模型的各種能力,可以用于幾乎所有 NLP 任務(wù)。
CHECKLIST 建議使用三種不同的測試方法:
?最小功能測試(MFT, Minimum Functionality Tests),其中使用預(yù)期的金標生成示例;
?不變性測試(INV, INVariance Tests),其中從給定的示例中,創(chuàng)建新示例,其中金標被翻轉(zhuǎn);
?方向預(yù)期測試(DIR, Directional Expectation Tests)對原始句子進行修改,金標往期望的方向(正向 / 負向)變化。
作者建議對于 NLP 模型的每一種能力,都盡量采用這三種測試方法測試一遍。
一句話總結(jié)現(xiàn)實影響:CheckList 可用于為各種 NLP 任務(wù)創(chuàng)建更詳盡的測試,有助于識別更多的錯誤的,帶來更強大的 NLP 系統(tǒng)。
該論文在 ACL 2020 上獲得了最佳論文獎(Best Paper)。
8、重新評估自動機器翻譯評估指標
自動化指標是開發(fā)和評估機器翻譯系統(tǒng)的基礎(chǔ)。判斷自動化度量標準是否與人類評估的黃金標準相一致,并非易事。
墨爾本大學計算與信息系統(tǒng)學院 的這項研究表明,當前的指標評估方法對用于評估的翻譯系統(tǒng)非常敏感,尤其是存在異常值時,這通常會導致對評價效果產(chǎn)生錯誤的自信判斷。例如,如果使用大量翻譯系統(tǒng)來計算領(lǐng)先指標和人工評估之間的相關(guān)性,則該相關(guān)性通常很高(即 0.9)。但是,如果僅考慮幾個最佳系統(tǒng),則相關(guān)性會顯著降低,在某些情況下甚至可能為負相關(guān)。
因此,他們提出了一種在自動度量標準下以人為判斷為閾值提高性能的方法,可以量化所引起的 I 型錯誤與 II 型錯誤,即可以接受的人類評判質(zhì)量差異,以及不能接受的人類評判差異。與 BLEU 和 TER 相比,優(yōu)先考慮 chrF,YiSi-1 和 ESIM 等評估指標。
一句話總結(jié)現(xiàn)實影響:這些發(fā)現(xiàn)對機器翻譯中的度量評估和系統(tǒng)性能評估的協(xié)議進行了改進。
這項研究在 ACL 2020 上入圍榮譽提名論文獎(Honorable Mention Papers)。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 “AI寒武紀”爆發(fā)至今,五類新物種登上歷史舞臺
- 4 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計算迎來商業(yè)化突破,但落地仍需時間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 地平線自動駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機器人東風翻身?