自動(dòng)駕駛相機(jī)-激光雷達(dá)深度融合的綜述及展望
本文是加拿大滑鐵盧大學(xué)CogDrive實(shí)驗(yàn)室對(duì)當(dāng)前最新的基于深度學(xué)習(xí)的相機(jī)-激光雷達(dá)融合(camera-LiDAR Fusion)方法的綜述。
本篇綜述評(píng)價(jià)了基于相機(jī)-激光雷達(dá)融合的深度補(bǔ)全,對(duì)象檢測(cè),語(yǔ)義分割和跟蹤方向的最新論文,并根據(jù)其融合層級(jí)進(jìn)行組織敘述并對(duì)比。最后討論了當(dāng)前學(xué)術(shù)研究與實(shí)際應(yīng)用之間的差距和被忽視的問(wèn)題。基于這些觀察,我們提出了自己的見(jiàn)解及可能的研究方向。
01.背景
基于單目視覺(jué)的感知系統(tǒng)以低成本實(shí)現(xiàn)了令人滿(mǎn)意的性能,但卻無(wú)法提供可靠的3D幾何信息。雙目相機(jī)可以提供3D幾何信息,但計(jì)算成本高,且無(wú)法在高遮擋和無(wú)紋理的環(huán)境中可靠的工作。此外,基于視覺(jué)的感知系統(tǒng)在光照條件復(fù)雜的情況下魯棒性較低,這限制了其全天候能力。而激光雷達(dá)不受光照條件影響,且能提供高精度的3D幾何信息。但其分辨率和刷新率低,且成本高昂。
相機(jī)-激光雷達(dá)融合感知,就是為了提高性能與可靠性并降低成本。但這并非易事,首先,相機(jī)通過(guò)將真實(shí)世界投影到相機(jī)平面來(lái)記錄信息,而點(diǎn)云則將幾何信息以原始坐標(biāo)的形式存儲(chǔ)。此外,就數(shù)據(jù)結(jié)構(gòu)和類(lèi)型而言,點(diǎn)云是不規(guī)則,無(wú)序和連續(xù)的,而圖像是規(guī)則,有序和離散的。這導(dǎo)致了圖像和點(diǎn)云處理算法方面的巨大差異。在圖1中,我們比較了點(diǎn)云和圖像的特性。
圖1.點(diǎn)與數(shù)據(jù)和圖像數(shù)據(jù)的比較
圖2. 論文總體結(jié)構(gòu)
02.趨勢(shì),挑戰(zhàn)和未來(lái)研究方向
無(wú)人駕駛汽車(chē)中的感知模塊負(fù)責(zé)獲取和理解其周?chē)膱?chǎng)景,其輸出直接影響著下游模塊(例如規(guī)劃,決策和定位)。因此,感知的性能和可靠性是整個(gè)無(wú)人駕駛系統(tǒng)的關(guān)鍵。通過(guò)攝像頭-激光雷達(dá)融合感知來(lái)加強(qiáng)其性能和可靠性,改善無(wú)人駕駛車(chē)輛在復(fù)雜的場(chǎng)景下的感知(例如城市道路,極端天氣情況等)。因此在本節(jié)中,我們總結(jié)總體趨勢(shì),并討論這方面的挑戰(zhàn)和潛在影響因素。如表IV所示,我們將討論如何改善融合方法的性能和魯棒性,以及與工程實(shí)踐相關(guān)的其他重要課題。如下是我們總結(jié)的圖像和點(diǎn)云融合的趨勢(shì):
2D到3D:隨著3D特征提取方法的發(fā)展,在3D空間中定位,跟蹤和分割對(duì)象已成為研究的熱點(diǎn)。
單任務(wù)到多任務(wù):一些近期的研究[64] [80]結(jié)合了多個(gè)互補(bǔ)任務(wù),例如對(duì)象檢測(cè),語(yǔ)義分割和深度完成,以實(shí)現(xiàn)更好的整體性能并降低計(jì)算成本。
信號(hào)級(jí)到多級(jí)融合:早期的研究經(jīng)常利用信號(hào)級(jí)融合,將3D幾何圖形轉(zhuǎn)換到圖像平面以利用現(xiàn)成的圖像處理模型,而最近的模型則嘗試在多級(jí)融合圖像和點(diǎn)云(例如早期融合,晚期融合)并利用時(shí)間上下文。
表I. 當(dāng)前的挑戰(zhàn)
A.與性能相關(guān)的開(kāi)放研究問(wèn)題
1)融合數(shù)據(jù)的(Feature/Signal Representation)特征/信號(hào)表示形式:
融合數(shù)據(jù)的Feature/Signal Representation是設(shè)計(jì)任何數(shù)據(jù)融合算法的基礎(chǔ)。當(dāng)前的特征/信號(hào)表示形式包括:
a) 在RGB圖像上的附加深度信息通道(RGB-D)。此方法由于可以通過(guò)現(xiàn)成的圖像處理模型進(jìn)行處理,因此早期的信號(hào)級(jí)融合常使用這種表達(dá)形式。但是,其結(jié)果也限制于2D圖像平面,這使其不適用于自動(dòng)駕駛。
b) 在點(diǎn)云上的附加RGB通道。此方法可以通過(guò)將點(diǎn)投影到像平面進(jìn)行像素點(diǎn)關(guān)聯(lián)來(lái)實(shí)現(xiàn)。但是,高分辨率圖像和低分辨率點(diǎn)云之間的分辨率不匹配會(huì)影響此方式的效率。
c) 將圖像和點(diǎn)云特征/信號(hào)均轉(zhuǎn)換為(intermediate data representation)其他的數(shù)據(jù)表示形式。當(dāng)前的intermediate data representation包括:(voxelized point cloud)體素化點(diǎn)云[75],(lattice)晶格[88]。未來(lái)的研究可以探索其他新穎的中間數(shù)據(jù)結(jié)構(gòu),例如(graph)圖,(tree)樹(shù)等,從而提高性能。
2)(Encoding Geometric Constraint)加入幾何約束:
與其他三維數(shù)據(jù)源(如來(lái)自立體相機(jī)或結(jié)構(gòu)光的RGBD數(shù)據(jù))相比,LiDAR有更長(zhǎng)的有效探測(cè)范圍和更高的精度,可提供詳細(xì)而準(zhǔn)確的3D幾何形狀。幾何約束已成為圖像和點(diǎn)云融合流程中的常識(shí),其提供了額外的信息來(lái)引導(dǎo)深度學(xué)習(xí)網(wǎng)絡(luò)實(shí)現(xiàn)更好的性能。將點(diǎn)云以RGBD圖像的形式投影到圖像平面似乎是最自然的解決方法,但是點(diǎn)云的稀疏性會(huì)產(chǎn)生空洞。深度補(bǔ)全和點(diǎn)云上采樣可以在某種程度上解決該問(wèn)題。除此之外利用單眼圖像預(yù)測(cè)深度信息以及在連續(xù)幀之間引入自我監(jiān)督學(xué)習(xí),也有望緩解這個(gè)問(wèn)題。但是,如何將這種幾何信息加入到融合流程中仍是當(dāng)前研究實(shí)踐中尚需解決的問(wèn)題。
3)(Encoding Temporal Context)加入時(shí)間上下文:
還有一些工程問(wèn)題阻礙了無(wú)人駕駛汽車(chē)的實(shí)際部署,例如LiDAR與攝像頭之間的時(shí)間不同步,LiDAR的低刷新率導(dǎo)致車(chē)速高時(shí)的點(diǎn)云變形,LiDAR傳感器測(cè)距誤差。這些問(wèn)題將導(dǎo)致圖像與點(diǎn)云,點(diǎn)云與實(shí)際環(huán)境之間的不匹配。根據(jù)深度補(bǔ)全方面的經(jīng)驗(yàn),可以采用連續(xù)幀之間的時(shí)間上下文來(lái)改善姿態(tài)估計(jì),從而改善特征融合的性能并使得下游的的header網(wǎng)絡(luò)受益。在自動(dòng)駕駛中,準(zhǔn)確估算周?chē)?chē)輛的運(yùn)動(dòng)狀態(tài)至關(guān)重要,時(shí)間上下文有助于獲得更平滑,更穩(wěn)定的結(jié)果。此外,時(shí)間上下文可能有益于在線自校準(zhǔn)。因此,應(yīng)對(duì)加入時(shí)間上下文進(jìn)行更多的研究。
4)深度學(xué)習(xí)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì):
要回答這個(gè)問(wèn)題,我們首先需要回答點(diǎn)云的最佳深度學(xué)習(xí)網(wǎng)絡(luò)結(jié)構(gòu)是什么。對(duì)于圖像處理,CNN是最佳選擇,并已被廣泛接受。但點(diǎn)云處理仍然是一個(gè)開(kāi)放的研究問(wèn)題。同時(shí)沒(méi)有點(diǎn)云深度學(xué)習(xí)網(wǎng)絡(luò)的設(shè)計(jì)原則,被廣泛的接受或被證明是最有效的。當(dāng)前大多數(shù)傳感器融合網(wǎng)絡(luò)都是基于對(duì)應(yīng)的圖像的網(wǎng)絡(luò)結(jié)構(gòu),或者是基于經(jīng)驗(yàn)或?qū)嶒?yàn)來(lái)進(jìn)行設(shè)計(jì)的。因此,采用神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索(NAS)[95]的方法可能會(huì)帶來(lái)進(jìn)一步的性能提升。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車(chē)電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車(chē)】汽車(chē)E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書(shū)】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專(zhuān)題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開(kāi)始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類(lèi)新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開(kāi)成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?