LaserNet:一種高效的自動駕駛概率三維目標(biāo)探測器
本文介紹了一種基于激光雷達(dá)數(shù)據(jù)的激光網(wǎng)絡(luò)自動駕駛?cè)S目標(biāo)檢測方法——LaserNet。高效的處理結(jié)果來自于在傳感器的自然距離視圖中處理激光雷達(dá)數(shù)據(jù)。在激光雷達(dá)視場范圍內(nèi)的操作有許多挑戰(zhàn),不僅包括遮擋和尺度變化,還有基于傳感器如何捕獲數(shù)據(jù)來提供全流程信息。
本文介紹的方法是使用一個全卷積網(wǎng)絡(luò)來預(yù)測每個點在三維物體上的多模態(tài)分布,然后有效地融合這些多模態(tài)分布來生成對每個對象的預(yù)測。實驗表明,把每個檢測建?醋饕粋分布,能獲得更好的整體檢測性能;鶞(zhǔn)測試結(jié)果表明,相比其他的檢測方法,本方法的運行時間更少;在訓(xùn)練大量數(shù)據(jù)來克服視場范圍目標(biāo)檢測問題上,本方法獲得最佳性能。
LaserNet通過以下幾個步驟實現(xiàn)三維檢測:
使用傳感器的固有范圍視場來構(gòu)建一個密集的輸入圖像;
圖像通過全卷積網(wǎng)絡(luò)生成一組預(yù)測;
對于圖像中的每個激光雷達(dá)點,預(yù)測一個類概率,并在俯視圖中對邊界框架進(jìn)行概率分布回歸;
每個激光雷達(dá)點分布通過均值漂移聚類進(jìn)行組合,以降低單個預(yù)測中的噪聲;
檢測器進(jìn)行端到端訓(xùn)練,在邊界框架上定義損失;
用一種新的自適應(yīng)非最大抑制(NMS)算法來消除重疊的邊框分布。
上圖為深層聚合網(wǎng)絡(luò)架構(gòu)。列表示不同的分辨率級別,行表示聚合階段。
上圖為特征提取模塊(左)和特征聚合模塊(右)。虛線表示對特征圖進(jìn)行了卷積。

最新活動更多
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計算迎來商業(yè)化突破,但落地仍需時間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 地平線自動駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?