使用 OpenCV 進(jìn)行人臉檢測(cè)
使用 OpenCV 和 Python 檢測(cè)人臉的一種非常流行且簡(jiǎn)單的方法
步驟 01
我為此使用 Google Colab,首先,請(qǐng)確保你已安裝 OpenCV。你可以使用 pip 安裝它:
pip install opencv-python
步驟 02
請(qǐng)確保這些庫(kù)已經(jīng)安裝。
import cv2
pip install numpy
pip install matplotlib
步驟 03
在檢測(cè)人臉之前,我們必須使用 Google Colab 打開網(wǎng)絡(luò)攝像頭。
from google.colab.patches import cv2_imshow
步驟 04
運(yùn)行這兩個(gè)代碼后,網(wǎng)絡(luò)攝像頭打開,你可以拍張照片。
from IPython.display import display, Javascript
from google.colab.output import eval_js
from base64 import b64decode
def take_photo(filename='photo.jpg', quality=0.8):
js = Javascript('''
async function takePhoto(quality) {
const div = document.createElement('div');
const capture = document.createElement('button');
capture.textContent = 'Capture';
div.a(chǎn)ppendChild(capture);
const video = document.createElement('video');
video.style.display = 'block';
const stream = await navigator.mediaDevices.getUserMedia({video: true});
document.body.a(chǎn)ppendChild(div);
div.a(chǎn)ppendChild(video);
video.srcObject = stream;
await video.play();
// Resize the output to fit the video element.
google.colab.output.setIframeHeight(document.documentElement.scrollHeight, true);
// Wait for Capture to be clicked.
await new Promise((resolve) => capture.onclick = resolve);
const canvas = document.createElement('canvas');
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
canvas.getContext('2d').drawImage(video, 0, 0);
stream.getVideoTracks()[0].stop();
div.remove();
return canvas.toDataURL('image/jpeg', quality);
}
''')
display(js)
data = eval_js('takePhoto({})'.format(quality))
binary = b64decode(data.split(',')[1])
with open(filename, 'wb') as f:
f.write(binary)
return filename
from IPython.display import Image
try:
filename = take_photo()
print('Saved to {}'.format(filename))
# Show the image which was just taken.
display(Image(filename))
except Exception as err:
# Errors will be thrown if the user does not have a webcam or if they do not
# grant the page permission to access it.
print(str(err))
照片保存為 photo.jpg。
photo.jpg
使用 Haar 級(jí)聯(lián)的人臉檢測(cè)是一種基于機(jī)器學(xué)習(xí)的方法,其中使用一組輸入數(shù)據(jù)訓(xùn)練級(jí)聯(lián)函數(shù)。OpenCV 已經(jīng)包含許多針對(duì)面部、眼睛、微笑等的預(yù)訓(xùn)練分類器。今天我們將使用面部分類器。你也可以嘗試使用其他分類器。
要檢測(cè)圖像中的人臉:
步驟 05
import cv2
img = cv2.imread('photo.jpg')
gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')
nose_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_nose.xml')
# detect all the faces in the image
faces = face_cascade.detectMultiScale(gray_img,1.1,4)
# print the number of faces detected
print(f"{len(faces)} faces detected in the image.")
對(duì)于每個(gè)人臉,繪制一個(gè)綠色矩形:
步驟 06
for x, y, width, height in faces:
cv2.rectangle(img, (x, y), (x + width, y + height), color=(0, 255, 0), thickness=2)
用矩形保存圖像:
步驟 07
# save the image with rectangles
cv2.imwrite("photo_detected.jpg", img)
轉(zhuǎn)到文件 photo_detected.jpg 并打開 。
結(jié)果:
photo_detected.jpg
原文標(biāo)題 : 使用 OpenCV 進(jìn)行人臉檢測(cè)

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?