深度神經(jīng)網(wǎng)絡(luò),為何備受關(guān)注?
深度神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)(ML, Machine Learning)領(lǐng)域中一種技術(shù)。
在監(jiān)督學(xué)習(xí)中,以前的多層神經(jīng)網(wǎng)絡(luò)的問題是容易陷入局部極值點(diǎn)。如果訓(xùn)練樣本足夠充分覆蓋未來的樣本,那么學(xué)到的多層權(quán)重可以很好的用來預(yù)測新的測試樣本。但是很多任務(wù)難以得到足夠多的標(biāo)記樣本,在這種情況下,簡單的模型,比如線性回歸或者決策樹往往能得到比多層神經(jīng)網(wǎng)絡(luò)更好的結(jié)果(更好的泛化性,更差的訓(xùn)練誤差)。
非監(jiān)督學(xué)習(xí)中,以往沒有有效的方法構(gòu)造多層網(wǎng)絡(luò)。多層神經(jīng)網(wǎng)絡(luò)的頂層是底層特征的高級表示,比如底層是像素點(diǎn),上一層的結(jié)點(diǎn)可能表示橫線,三角; 而頂層可能有一個結(jié)點(diǎn)表示人臉。一個成功的算法應(yīng)該能讓生成的頂層特征最大化的代表底層的樣例。如果對所有層同時訓(xùn)練,時間復(fù)雜度會太高; 如果每次訓(xùn)練一層,偏差就會逐層傳遞。這會面臨跟上面監(jiān)督學(xué)習(xí)中相反的問題,會嚴(yán)重欠擬合。
2006年,hinton提出了在非監(jiān)督數(shù)據(jù)上建立多層神經(jīng)網(wǎng)絡(luò)的一個有效方法,簡單的說,分為兩步,一是每次訓(xùn)練一層網(wǎng)絡(luò),二是調(diào)優(yōu)使原始表示x向上生成的高級表示r和該高級表示r向下生成的x'盡可能一致。方法是
1,首先逐層構(gòu)建單層神經(jīng)元,這樣每次都是訓(xùn)練一個單層網(wǎng)絡(luò)。
2,當(dāng)所有層訓(xùn)練完后,hinton使用wake-sleep算法進(jìn)行調(diào)優(yōu)。將除最頂層的其它層間的權(quán)重變?yōu)殡p向的,這樣最頂層仍然是一個單層神經(jīng)網(wǎng)絡(luò),而其它層則變?yōu)榱藞D模型。向上的權(quán)重用于”認(rèn)知“,向下的權(quán)重用于”生成“。然后使用Wake-Sleep算法調(diào)整所有的權(quán)重。讓認(rèn)知和生成達(dá)成一致,也就是保證生成的最頂層表示能夠盡可能正確的復(fù)原底層的結(jié)點(diǎn)。比如頂層的一個結(jié)點(diǎn)表示人臉,那么所有人臉的圖像應(yīng)該激活這個結(jié)點(diǎn),并且這個結(jié)果向下生成的圖像應(yīng)該能夠表現(xiàn)為一個大概的人臉圖像。Wake-Sleep算法分為醒(wake)和睡(sleep)兩個部分。
2.1,wake階段,認(rèn)知過程,通過外界的特征和向上的權(quán)重(認(rèn)知權(quán)重)產(chǎn)生每一層的抽象表示(結(jié)點(diǎn)狀態(tài)),并且使用梯度下降修改層間的下行權(quán)重(生成權(quán)重)。也就是“如果現(xiàn)實(shí)跟我想像的不一樣,改變我的權(quán)重使得我想像的東西就是這樣的“。
2.2,sleep階段,生成過程,通過頂層表示(醒時學(xué)得的概念)和向下權(quán)重,生成底層的狀態(tài),同時修改層間向上的權(quán)重。也就是“如果夢中的景象不是我腦中的相應(yīng)概念,改變我的認(rèn)知權(quán)重使得這種景象在我看來就是這個概念“。
由于自動編碼器(auto-encoder,即上面說的神經(jīng)網(wǎng)絡(luò)。廣義上的自動編碼器指所有的從低級表示得到高級表示,并能從高級表示生成低級表示的近似的結(jié)構(gòu),狹義上指的是其中的一種,谷歌的人臉識別用的)有聯(lián)想功能,也就是缺失部分輸入也能得到正確的編碼,所以上面說的算法也可以用于有監(jiān)督學(xué)習(xí),訓(xùn)練時y做為頂層網(wǎng)絡(luò)輸入的補(bǔ)充,應(yīng)用時頂層網(wǎng)絡(luò)生成y'。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會
-
即日-5.15立即報(bào)名>>> 【在線會議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評 >> 【評選啟動】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來商業(yè)化突破,但落地仍需時間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 地平線自動駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?