使用Numpy+OpenCV來增強(qiáng)灰度圖像
在日常生活中,我們經(jīng)常會掃描紙張把它們轉(zhuǎn)換成圖像,但這些圖像往往存在陰影,我們有各種各樣的工具可以在線增強(qiáng)這些圖像,使它們的亮度更亮,并消除這些圖像中的陰影。那有沒有方法可以手動去除陰影呢?比如我們可以將任何圖像作為灰度圖像加載到我們的代碼中,并在幾秒鐘內(nèi)獲得輸出,而無需任何應(yīng)用程序的幫助。這是可以通過使用基本的Numpy操作和一些openCV函數(shù)來實現(xiàn)。我們使用了下面的圖片作為例子,它是用手機(jī)拍的。
很明顯,它有一個陰影需要刪除。將必要的軟件包導(dǎo)入你的環(huán)境。為了易于顯示圖像,我們使用Jupyter Notebook。import cv2
import numpy as np
import matplotlib.pyplot as plt
刪除陰影時,有兩件事要注意。
(1)由于圖像是灰度圖像,如果圖像背景較淺且對象較暗,則必須先執(zhí)行最大值濾波,然后再執(zhí)行最小值濾波;(2)如果圖像背景較暗且物體較亮,我們可以先執(zhí)行最小值濾波,然后再進(jìn)行最大值濾波。那么,最大值濾波和最小值濾波到底是什么呢?最大值濾波:假設(shè)我們有一個特定大小的圖像 I ,我們編寫的算法應(yīng)逐個遍歷 I 的像素,并且對于每個像素(x,y)都必須找到該像素周圍的鄰域(大小為N x N的窗口)中的最大灰度值,并將該最大灰度值寫入A中相應(yīng)的像素位置(x,y),所得圖像 A 稱為輸入圖像 I 的最大值濾波圖像。讓我們在代碼中實現(xiàn)這個過程。max_filtering()函數(shù)接受輸入圖像和窗口大小N。它最初在輸入數(shù)組周圍創(chuàng)建一個“wall”(帶有-1的填充),當(dāng)我們遍歷邊緣像素時會使用這個數(shù)據(jù)。然后,我們創(chuàng)建一個“ temp”變量,將計算出的最大值復(fù)制到該變量中。然后,我們遍歷數(shù)組,并圍繞當(dāng)前像素大小N x N創(chuàng)建一個窗口。然后,我們使用“ amax()”函數(shù)在該窗口中計算最大值,并將該值寫入temp數(shù)組。我們將該臨時數(shù)組復(fù)制到主數(shù)組A中,并將其作為輸出返回。A是輸入I的最大值濾波圖像。def max_filtering(N, I_temp):
wall = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)
wall[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)] = I_temp.copy()
temp = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)
for y in range(0,wall.shape[0]):
for x in range(0,wall.shape[1]):
if wall[y,x]!=-1:
window = wall[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]
num = np.a(chǎn)max(window)
temp[y,x] = num
A = temp[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)].copy()
return A
最小值濾波:此算法與最大值濾波完全相同,區(qū)別在于我們不再去找鄰近的最大灰度值,而是找該像素周圍N x N鄰近的最小值,并將該最小灰度值寫入B中的(x,y),所得的圖像 B 稱為圖像 I 的經(jīng)過最小值濾波的圖像。讓我們對該過程進(jìn)行編碼。def min_filtering(N, A):
wall_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)
wall_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)] = A.copy()
temp_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)
for y in range(0,wall_min.shape[0]):
for x in range(0,wall_min.shape[1]):
if wall_min[y,x]!=300:
window_min = wall_min[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]
num_min = np.a(chǎn)min(window_min)
temp_min[y,x] = num_min
B = temp_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)].copy()
return B
因此,如果圖像的背景較淺,我們要先執(zhí)行最大值濾波,這會為我們提供增強(qiáng)的背景,并將該最大值濾波后的圖像傳遞給最小值濾波函數(shù),該函數(shù)將負(fù)責(zé)實際的內(nèi)容增強(qiáng)。執(zhí)行最小-最大值濾波后,我們獲得的值不在0-255的范圍內(nèi),所以我們必須歸一化使用背景減法獲得的最終陣列,該方法是用原始圖像減去最小最大值濾波后的圖像,以獲得去除了陰影的最終圖像。#B is the filtered image and I is the original image
def background_subtraction(I, B):
O = I - B
norm_img = cv2.normalize(O, None, 0,255, norm_type=cv2.NORM_MINMAX)
return norm_img
變量N(用于過濾的窗口大小)將根據(jù)圖像中粒子或內(nèi)容的大小進(jìn)行更改。對于測試圖像,選擇大小N = 20。增強(qiáng)后的最終輸出圖像如下所示:
輸出圖像是原始圖像增強(qiáng)后的結(jié)果,所實現(xiàn)的代碼是在openCV中手動實現(xiàn)一些庫函數(shù)以增強(qiáng)圖像的拙劣嘗試,帶有圖像的整個notebook可以在下面的Github鏈接中找到。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺
- 4 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 5 國產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計算迎來商業(yè)化突破,但落地仍需時間
- 7 東陽光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長空間
- 8 地平線自動駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?