被低估的單目視覺識(shí)別
對(duì)單目來(lái)說(shuō)物體越遠(yuǎn),測(cè)距的精度越低,硬件上的缺點(diǎn)可以通過算法去彌補(bǔ),近日有兩篇關(guān)于單目視覺的研究論文曝光,一篇是單目視頻的深度估計(jì),另一篇?jiǎng)t是單目3d物體識(shí)別,在數(shù)據(jù)集下測(cè)試都取得了不錯(cuò)的效果,我們熟悉的單目攝像頭可能一直被低估了。
攝像頭是自動(dòng)駕駛汽車中重要的傳感器之一,在自動(dòng)駕駛過程中的首要任務(wù)就是道路識(shí)別 ,主要是圖像特征法和模型匹配法來(lái)進(jìn)行識(shí)別。行駛過程中需要進(jìn)行障礙物檢測(cè)和路標(biāo)路牌識(shí)別等,此時(shí)車輛上的信息采集便可以運(yùn)用單目視覺或者多目視覺。
由于很多圖像算法的研究都是基于單目攝像機(jī)開發(fā)的,因此相對(duì)于其他類別的攝像機(jī),單目攝像機(jī)的算法成熟度更高。基于單目攝像頭可以用來(lái)定位、目標(biāo)識(shí)別等。但是相比多目,單目有著先天的缺陷,視野信息不能夠豐富,單目測(cè)距的精度也較低。
不過單目攝像頭的作用還未發(fā)揮到極致,近日有兩篇關(guān)于單目視覺的研究,讓眾多研究者驚艷,原來(lái)單目一樣可以有不錯(cuò)的表現(xiàn)。
Paper1:Orthographic Feature Transform for Monocular 3D Object Detection
單目3d物體檢測(cè)是一件很有挑戰(zhàn)性的事情,目前最先進(jìn)系統(tǒng)的成績(jī)也不及用激光雷達(dá)的1/10,劍橋大學(xué)的科學(xué)家利用單目視覺進(jìn)行3d物體識(shí)別,通過引入正交特征變換,使基于圖像的特征映射到正交3D空間,來(lái)避免形成圖像域,可以全面地推斷出各個(gè)物體比例尺寸以及相隔的距離。通過在KITTI數(shù)據(jù)集里測(cè)試,發(fā)現(xiàn)與前人的Mono3D方法對(duì)比,這種方法在鳥瞰圖平均精確度、3D物體邊界識(shí)別上各項(xiàng)測(cè)試成績(jī)上均優(yōu)于對(duì)手。
尤其在探測(cè)遠(yuǎn)處物體時(shí)要遠(yuǎn)超Mono3D,遠(yuǎn)處可識(shí)別出的汽車數(shù)量更多。甚至在嚴(yán)重遮擋、截?cái)嗟那闆r下仍能正確識(shí)別出物體。在某些場(chǎng)景下甚至達(dá)到了3DOP系統(tǒng)的水平。
在這項(xiàng)工作中,提出的一種新穎的單目三維物體檢測(cè)方法,基于在鳥瞰視野范圍內(nèi)操作的,減輕了許多不良圖像的屬性,更易于推斷出世界的3D結(jié)構(gòu)。用一種簡(jiǎn)單的正交特征變換,將基于圖像的特征轉(zhuǎn)換為這種鳥瞰視圖表示,并描述了如何使用圖像積分有效地實(shí)現(xiàn)它,以深二維卷積網(wǎng)絡(luò)的形式應(yīng)用于提取的鳥瞰特征,取得了不錯(cuò)的效果,說(shuō)明單目還有很大可開發(fā)的空間。
Paper2:A Structured Approach to Unsupervised Depth Learning from Monocular Videos
這是谷歌的工程師做的一個(gè)研究,他利用單目視頻深度估計(jì),自從2014年NIPS上出現(xiàn)第一篇用CNN-based來(lái)做單目深度估計(jì),近幾年也不斷涌現(xiàn)出一些做單目深度估計(jì)的文章,有直接依靠深度學(xué)習(xí)和網(wǎng)絡(luò)架構(gòu)得到結(jié)果,還有依靠于深度信息本身的性質(zhì)進(jìn)行估計(jì),基于CRF和基于相對(duì)深度方法的,本篇文章是基于無(wú)監(jiān)督學(xué)習(xí)單目視頻深度估計(jì)。文中的方法能夠模擬運(yùn)動(dòng)物體并產(chǎn)生高質(zhì)量的深度估計(jì)結(jié)果,與以前的單目視頻無(wú)監(jiān)督學(xué)習(xí)方法相比,該方法能夠恢復(fù)移動(dòng)物體的正確深度。也就說(shuō),能夠正確地恢復(fù)與自身運(yùn)動(dòng)車輛相同速度的移動(dòng)汽車的深度。因?yàn)橐慌_(tái)相對(duì)靜止的車輛,往往會(huì)表現(xiàn)出與地面相同的無(wú)線深度特征,解決了高動(dòng)態(tài)場(chǎng)景中的問題。
這些方法仍需要很長(zhǎng)時(shí)間去測(cè)試其可靠性,相比激光雷達(dá),單目算法一旦能在無(wú)人駕駛汽車上成功應(yīng)用,將會(huì)節(jié)省一大筆費(fèi)用,單目視覺識(shí)別可能還有著無(wú)限的市場(chǎng)潛力。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
3月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
4月30日立即下載>> 【村田汽車】汽車E/E架構(gòu)革新中,新智能座艙挑戰(zhàn)的解決方案
-
5月15-17日立即預(yù)約>> 【線下巡回】2025年STM32峰會(huì)
-
即日-5.15立即報(bào)名>>> 【在線會(huì)議】安森美Hyperlux™ ID系列引領(lǐng)iToF技術(shù)革新
-
5月15日立即下載>> 【白皮書】精確和高效地表征3000V/20A功率器件應(yīng)用指南
-
5月16日立即參評(píng) >> 【評(píng)選啟動(dòng)】維科杯·OFweek 2025(第十屆)人工智能行業(yè)年度評(píng)選
推薦專題
- 1 UALink規(guī)范發(fā)布:挑戰(zhàn)英偉達(dá)AI統(tǒng)治的開始
- 2 北電數(shù)智主辦酒仙橋論壇,探索AI產(chǎn)業(yè)發(fā)展新路徑
- 3 降薪、加班、裁員三重暴擊,“AI四小龍”已折戟兩家
- 4 “AI寒武紀(jì)”爆發(fā)至今,五類新物種登上歷史舞臺(tái)
- 5 國(guó)產(chǎn)智駕迎戰(zhàn)特斯拉FSD,AI含量差幾何?
- 6 光計(jì)算迎來(lái)商業(yè)化突破,但落地仍需時(shí)間
- 7 東陽(yáng)光:2024年扭虧、一季度凈利大增,液冷疊加具身智能打開成長(zhǎng)空間
- 8 地平線自動(dòng)駕駛方案解讀
- 9 封殺AI“照騙”,“淘寶們”終于不忍了?
- 10 優(yōu)必選:營(yíng)收大增主靠小件,虧損繼續(xù)又逢關(guān)稅,能否乘機(jī)器人東風(fēng)翻身?